

Agenda Präsenz-Training Elektronikzuverlässigkeit – Systematik, Methoden, Tests und Wissen zur Absicherung in der Praxis

1. Tag

09:00 Uhr Begrüßung / Einführung

Motivation - Produktzuverlässigkeit, Kundenrelevanz, Unterschiede und

Gemeinsamkeiten von Mechanik zu Elektronik anhand der

Badewannenkurve, Überblick über den Betrachtungsgegenstand "Elektronik": Bauelemente sowie Aufbau- und Verbindungstechnik,

Übersicht über die Inhalte des Seminars

09:30 Uhr Mathematische Beschreibung der Zuverlässigkeit

Statistische Kenngrößen zur Zuverlässigkeitsbeschreibung,

Lebensdauerbeschreibung mit Verteilungsfunktionen: Exponential- und

Weibullverteilung

10:15 Uhr Pause

10:30 Uhr Mathematische Beschreibung der Zuverlässigkeit

12:00 Uhr Mittagspause

13:00 Uhr Physics of Failure – Welche Wirkmechanismen und Einflussgrößen

führen zu Ausfällen?

Kennenlernen der wesentlichen Ausfallmechanismen in der Elektronik und deren Berechnungsgrundlagen: u.a. Diffusionsprozesse (Arrhenius'

Law), Elektromigration (Black's Law), Intermetallisches

Phasenwachstum, Thermomechanik (Coffin-Manson, Norris-Landzberg, Englmaier Law), Vibration, CAF, Whisker, Dendriten. Erläuterung und

Diskussion anhand von Fotoaufnahmen

15:00 Uhr Pause

15:15 Uhr Reliability Process – Definition, Development, Production Process

Development, Product Validation, Series production, Field phase

Darstellung des "roten Fadens" zur Sicherstellung von zuverlässigen Elektronikprodukten beginnend bei der Lastannahme für den gesamten Life cycle über die Risiko-, Ausfallraten- und Lebensdauerbewertung hin zur Validierung durch effektive Testprozeduren. Risikobewertung und Optimierung des Produktionsprozesses. Sicherstellung der

Feldzuverlässigkeit durch Produktionsüberwachung und Traceability.

Root Cause Analysis im Fehlerfall und Fehlerhandling

17:15 Uhr Ende des ersten Tages

2. Tag

08:30 Uhr	Ausfallratenberechnung für ein elektronisches Produkt: allgemeines Vorgehen und Differenzierung zu Physics of Failure, Unterschiede zwischen den Standards (SN 29500, Mil-Hdbk. 217F) Praktisches Beispiel
10:15 Uhr	Pause
10:30 Uhr	Präventive Lebensdauerabsicherung durch rechnerische/simulative Lebensdauerbestimmung basierend auf dem Physics of Failure Ansatz
	Lebensdauervergleich verschiedener Designs, Erhöhung des Qualifikationserfolges, Optimierte Materialwahl: Kennenlernen einer möglichen praxisnahen Durchführung mittels der Software Sherlock®
12:00 Uhr	Mittagspause
13:00 Uhr	Präventive Lebensdauerabsicherung durch rechnerische/simulative Lebensdauerbestimmung
14:00 Uhr	Vorstellung etablierter Testverfahren (HTOE, 85/85, PTCE, Temperaturschock, Vibration), Hinweise zur Anwendung und Grenzen, Bewertung der Aussagekraft hinsichtlich der Prognose im realen Betrieb
15:00 Uhr	Pause
15:15 Uhr	Aktuelle Trends/Herausforderungen bei der Bewertung der Zuverlässigkeit für Elektronik, Robustness Validation, funktionale Sicherheit, Counterfeit Parts, fehlende PCNs
16:30 Uhr	Ende des zweiten Tages